
Ber
lin

C
e
n

te
r

fo
r

Genome Based
B
io

i n
fo

rm
atics

Max Planck Institute for Molecular Genetics

Computational Diagnostics Group @ Dept. Vingron

Ihnestrasse 63-73, D-14195 Berlin, Germany

http://compdiag.molgen.mpg.de/

User’s Guide to the R Package compdiagTools

Toolbox for Performing and Illustrating
Microarray Data Analyses

Stefanie Scheid, Jochen Jäger, Claudio Lottaz

email: first.last@molgen.mpg.de

Technical Report
Nr. 2005/01

Abstract

This is the vignette of the Bioconductor compliant package compdiagTools , a collec-
tion of valuable and handy functions for performing and illustration of gene expres-
sion data analyses.

Contents

1 Preprocessing Utilities 2
1.1 Overview . 2
1.2 Directory structure . 3
1.3 Graphics utilities . 4

1.3.1 boxplt.cpd and boxplt.plmset.cpd- box plots on expression
levels and standard errors . 4

1.3.2 wimage.cpd - 2 dimensional residual plots 4
1.3.3 MvsA.cpd - rank residual plots 6

1.4 Incremental preprocessing . 7

2 optimTree - Rearranging dendrograms 8
2.1 Introduction . 8
2.2 Implementation . 9
2.3 Plotting expression data . 11
2.4 Limitations . 14

3 Evaluating Gene Lists 16
3.1 geneLister - generating gene lists in HTML 16
3.2 geneImager - images with expression data 17
3.3 gokeggLister - overrepresentation analysis 17

4 Unsupervised Methods 20
4.1 Consensus Clustering . 20

5 Odds and Ends 23
5.1 getPubmedEntry - getting citation information 23
5.2 greenred.colors - colors for green-red cluster plots 24
5.3 factorplot - Visualize factor like data 24

6 Bibliography 25

1

Chapter 1

Preprocessing Utilities

Author

The functions discussed here are written by Stefan Bentink and Dennis Kostka, this
description by Claudio Lottaz1.

1.1 Overview

The functions described here are used in the CompDiag pipeline for processing mi-
croarray datasets acquired using Affymetrix GeneChip microarrays. We rely on the
Bioconductor packages affy , vsn and affyPLM . Furthermore, meta-data packages
for the particular chips are needed.

The preprocessing of a dataset is performed by calling the runPreprocessing.
This function needs a path, where the processed data should be written and a file
which contains full paths to all CEL-files to be included:

runPreprocessing{"/project/gene_expression/analyses/Yeoh02")

When the cel-file-list is omitted, the file ”celfiles.lst” in the base path is expected to
contain this list. The cel-file-list contains one entry per line holding a short name
before and a complete path after the single tab allowed in each entry. E.g.:

...
E2A-PBX1-C8 /public_datasets/Yeoh02/rawdata/E2A-PBX1-C8.CEL.gz
E2A-PBX1-C9 /public_datasets/Yeoh02/rawdata/E2A-PBX1-C9.CEL.gz
E2A-PBX1-R1 /public_datasets/Yeoh02/rawdata/E2A-PBX1-R1.CEL.gz
Hyperdip-50-1 /public_datasets/Yeoh02/rawdata/Hyperdip-50-#1.CEL.gz
Hyperdip-50-10 /public_datasets/Yeoh02/rawdata/Hyperdip-50-#10.CEL.gz

1Contact: claudio.lottaz@molgen.mpg.de

2

CHAPTER 1. PREPROCESSING UTILITIES 3

Hyperdip-50-11 /public_datasets/Yeoh02/rawdata/Hyperdip-50-#11.CEL.gz
Hyperdip-50-12 /public_datasets/Yeoh02/rawdata/Hyperdip-50-#12.CEL.gz
Hyperdip-50-13 /public_datasets/Yeoh02/rawdata/Hyperdip-50-#13.CEL.gz
Hyperdip-50-14 /public_datasets/Yeoh02/rawdata/Hyperdip-50-#14.CEL.gz
Hyperdip-50-2 /public_datasets/Yeoh02/rawdata/Hyperdip-50-#2.CEL.gz
...

Here is a rough description of our preprocessing protocol:

Background correction: No explicit background correction is performed. The
theoretical model used for normalization in vsn incorporates a model for background
correction. Moreover, we did not observe useful effects due to the explicit background
correction step, we have used in former versions of our preprocessing.

Normalization: Normalization is performed on the probe level using the variance
stabilization and calibration method implemented in the Bioconductor package vsn.
This method uses a asinh transformation (instead of the log) which renders the
variance of probe intensities approximately independent of their expected expression
levels. For each chip an offset and a scaling factor are estimated, assuming that a
fair fraction of probes are not differentially expressed across the study. Given the
computational complexity of this method, parameters are estimated on a random
subset of probes and then used to transform the entire arrays.

Probe set summary: To compute expression levels for probe sets based on the
corresponding probes, we apply the median polish method on the arsinh normalized
data. For each probe set a robust additive model is fitted across the arrays, possibly
taking into account the different sensitivity of the probe cells via a probe effect. For
this step we use the affyPLM package, because the methods in this package provide
residuals for each probe reflecting the quality of the model fit.

1.2 Directory structure

The data generated during preprocessing is saved in a predefined directory structure
of subdirectories ind the base directory provided to runPreprocessing:

ˆ ./logs: a log file containing progress messages is written here. Existing files
are not overwritten.

ˆ ./normalized: Normalized data as well as images for quality control are saved
here.

CHAPTER 1. PREPROCESSING UTILITIES 4

ˆ ./simpleaffy: Standard MAS5-like analysis is performed only for quality
control. The results are saved here.

ˆ ./summarized: Results from the summary step including images for quality
control are saved here.

The final result is written into a Bioconductor expression set and saved into the
base directory if not specified otherwise.

1.3 Graphics utilities

During preprocessing, we routinely generate plot and images useful for quality con-
trol. The corresponding function can also be used directly. By default they generate
bitmap output in PNG format, but upon request they can also generate PDF out-
put. PDF output is much better in quality but needs more memory. Memory is not
an issue for particular documents but for routine generation of several images per
chip in large datasets.

1.3.1 boxplt.cpd and boxplt.plmset.cpd- box plots on ex-
pression levels and standard errors

When microarray experiments are consistently measured, we expect similar distri-
butions of expression levels after normalization. Box plots give a nice overview on
distributions by showing particular quantiles over many distributions in one plot.
Moreover, outliers are visible but of less interest for quality control in the context
of microarray studies. In a well performed and normalized dataset the boxes of the
different chips are neatly aligned (Figure 1.1, left hand side). Furthermore, we can
consider the distributions of residuals for each microarray. We want to see very nar-
row distributions around zero, meaning that the model fit used for summary did not
need to correct the actual measurements excessively (Figure 1.1, right hand side).

1.3.2 wimage.cpd - 2 dimensional residual plots

This plot allows for the chip-wise illustration of the correction by the model fit
for summary. The same residuals used in boxplt.plmset.cpd are drawn as color
codes against their position on the chip (Figure 1.2). This reveals locally consistent
corrections by the linear model. This could happen, for instance, when dirt causes
bad measurements in a whole region of a chip, or when some technical problem leads
to a gradiant over the chip.

CHAPTER 1. PREPROCESSING UTILITIES 5

X01003
X01007
X02020
X04018
X09002
X10005
X11002
X12008
X16002
X16007
X17003
X18001
X19002
X19008
X19014
X19017
X20005
X24006
X28008
X28009
X31015
X37001
X43006
X43015
X44001
X49004
X56007
X64005
X65003
X83001

4 6 8 10 12 14

expression levels

X01003
X01007
X02020
X04018
X09002
X10005
X11002
X12008
X16002
X16007
X17003
X18001
X19002
X19008
X19014
X19017
X20005
X24006
X28008
X28009
X31015
X37001
X43006
X43015
X44001
X49004
X56007
X64005
X65003
X83001

−5 0 5 10

model standard errors

Figure 1.1: Boxplots on expression levels (left) and residuals (right).

Figure 1.2: Chip-wise residual-location-image.

CHAPTER 1. PREPROCESSING UTILITIES 6

1.3.3 MvsA.cpd - rank residual plots

The rank-residual-plots generated by MvsA.cpd are generated as follows: expression
levels from a reference chip (one of the function arguments) are subtracted from the
chip to be investigated (another function argument) to form the residuals. These
residuals are ranked according to the expression level measured in the investigated
chip. Such plots are useful to check whether the variance stabilization procedure
has worked.

The scatter plot as shown in Figure 1.3 shows the variance of genes depending
on their epxression level as a dark band around the x axis. The band should be
the same width from left to right. As a further help to judge this property, we
draw in blue three times median absolute deviance for a running window across the
expression ranks. These should ideally form a horizontal line. The red line around
zero should also be horizontal (at zero). This is a loess fit to the drawn dots.

Figure 1.3: Chip-wise rank-residual-plot.

CHAPTER 1. PREPROCESSING UTILITIES 7

1.4 Incremental preprocessing

There are two reasons for incremental normalization and preprocessing. On one
hand, very large datasets can only be preprocessed using large amounts of memory.
For instance, datasets measured with modern whole-genome microarrays can usually
not be processed on 32-bit linux machines when they have more than 100 Chips,
because the available maximal memory of 2GB is not sufficient. On the other hand,
when diagnostic signatures are to be published, they have to be stable for new
patients that are diagnosed after the establishment of the signature. For these two
reasons, we include the addonPreprocessing method to the compdiagTools package.

The idea is to collect a core set of samples first and use these for establishing
a scale. This scale consists of probe-effects used in median polishing and vsn pa-
rameters. Both sets of parameters are stored by the runPreprocessing method into
the preprocessing description slot of expression sets, the corresponding list element
is called val and the addonPreprocessing method relies on the package docval to
compute the expression levels for external chips.

In addition to the straight computation of expression levels for external chips,
the here described method can also generate the corresponding images for quality
control, as they are suggested by runPreprocessing. I.e., the rank-residual plots
and the residual-location-plots. Not all of the whole-project quality control plots
are drawn, because they would need the complete reading of all raw data, which is
not feasible for large datasets. Actually, only the boxplot for summarized expression
levels is updated for the external chips in order to compare the distributions of the
expression levels of external chips with those of the core.

Chapter 2

optimTree - Rearranging
dendrograms

Author

The optimTree bundle is written by Stefanie Scheid1.

2.1 Introduction

The two-dimensional hierarchical clusterplot is one of the most favourite tools to
visualize expression data. The left plot of Figure 2.1 shows such a plot for the lym-
phoma data set in [Alizadeh et al.(2000)Alizadeh, Eisen, Davis, Ma, Lossos, Rosenwald, Boldrick, Sabet et al.].
The data set stored in data(lymphoma) in package vsn comprises eight cDNA sam-
ples, the values are log ratios of tissue to reference expression. For our purposes,
we filtered for the 100 genes with highest variance. The center of the clusterplot
is filled with expression data coded in colours. Here, bright yellow corresponds to
large positive log ratios (up-regulation) and bright blue to large negative log ratios
(down-regulation).

Rows and columns of the expression matrix are reordered independently of each
other. The dendrograms on top and on the left side of Figure 2.1 depict the re-
sulting ordering schemes. For each of the two dimensions, we conduct hierarchical
clustering with average linkage using Euclidean distances between samples or genes
respectively. For computation, we apply the R function hclust twice and pass the
resulting hclust objects on to the plotting function clusterplot.

Clusterplots are a comfortable tool for visualizing a data set or exploring a set of
candidate genes. However, their interpretation is not trouble-free. A closer inspec-

1Contact: stefanie.scheid@molgen.mpg.de

8

CHAPTER 2. OPTIMTREE - REARRANGING DENDROGRAMS 9

tion of the left plot in Figure 2.1 reveals a typical problem: We immediately desire
to rearrange the columns because the two left-most and the two right-most samples
appear to belong together. They are all coloured mainly in blue and, what is more
relevant, they actually belong to the same disease entity (CLL) while the samples
in between belong to another entity (DLCL). Regarding the dendrogram on top, we
could simply swap it at its third node from top. Thus, all CLL columns are gathered
on the left hand side which is similar to the right plot in Figure 2.1. This swapping
is not illegal, it does not change the information collected in the plot in any way.
To the human eye however, the new ordering ”makes more sense”. Of course, we
can perform many swappings while keeping a valid dendrogram. With n samples,
the dendrogram has n− 1 nodes and we are allowed to flip each node, thus leading
to 2n−1 possible dendrogram permutations. One half of these just mirrors the other
half, which reduces the number of unique permutations to 2n−2 for our purposes.
For the lymphoma data set, n = 8 leads to 64 possible dendrograms. The following
chapter introduces the R function optimTree which is designed to find the optimal
dendrogram permutation with respect to a certain measure.

2.2 Implementation

The search for an optimal dendrogram rearrangement works as follows: We enumer-
ate all possible permutations. For each resulting dendrogram, we read the samples
from left to right and sum over distances between neighboring samples, disregarding
any feature of the underlying dendrogram. The optimal dendrogram is the one with
the smallest sum of distances, that is the dendrogram where similar (close) samples
are arranged in proximity. Consider the toy example of four leafs and the distance
matrix shown in Table 2.1. Based on the distance matrix, hierarchical clustering
using hclust is performed.

Four samples lead to 22 = 4 possible dendrograms. These are shown in Figure
2.2. The number on top of each plot is the sum of pairwise distances. For the first
plot, this is the sum of distances between leafs 4 and 2, 2 and 1, 1 and 3, resulting
in 9 + 1 + 5 = 15. The optimal dendrogram is the second one with a distance sum
of 6.

The optimTree bundle contains two main functions that affect dendrograms:
optimTree and optimTree.dendrogram. Function optimTree.plot is a convenient
wrapper to plot gene expression data, see Section 2.3. Function optimTree works
on hclust objects but needs the underlying distance matrix as additional input. It
returns an hclust object with minimal sum of distances. In case the minimum is not
unique, optimTree returns the first minimum. The output object has an additional
slot sumDist where the sum of pairwise distances is stored. The optional argument

CHAPTER 2. OPTIMTREE - REARRANGING DENDROGRAMS 10

52
13
50
94
61
38
72
31
34
85
97
57
29
66
80
41
35
59
55
51
64
43
68
84
69
74
48
32
54
65
63
58
42
53
27
3
7
9
87
100
8
70
21
78
36
88
23
56
37
44
22
62
99
18
77
46
26
28
33
11
24
1
2
6
12
91
95
19
20
30
49
79
10
86
71
93
98
47
40
75
81
25
67
89
82
92
45
76
4
5
17
14
15
16
39
60
90
96
73
83

CLL47 DLCL57 DLCL58 DLCL19 DLCL56 CLL48 CLL69 CLL70

52
13
50
94
61
38
72
31
34
85
97
57
29
66
80
41
35
59
55
51
64
43
68
84
69
74
48
32
54
65
63
58
42
53
27
3
7
9
87
100
8
70
21
78
36
88
23
56
37
44
22
62
99
18
77
46
26
28
33
11
24
1
2
6
12
91
95
19
20
30
49
79
10
86
71
93
98
47
40
75
81
25
67
89
82
92
45
76
4
5
17
14
15
16
39
60
90
96
73
83

C
LL

47

D
LC

L5
7

D
LC

L5
8

D
LC

L1
9

D
LC

L5
6

C
LL

48

C
LL

69

C
LL

70

52
13
50
94
61
38
72
31
34
85
97
57
29
66
80
41
35
59
55
51
64
43
68
84
69
74
48
32
54
65
63
58
42
53
27
3
7
9
87
100
8
70
21
78
36
88
23
56
37
44
22
62
99
18
77
46
26
28
33
11
24
1
2
6
12
91
95
19
20
30
49
79
10
86
71
93
98
47
40
75
81
25
67
89
82
92
45
76
4
5
17
14
15
16
39
60
90
96
73
83

CLL47 CLL69 CLL70 CLL48 DLCL57 DLCL19 DLCL56 DLCL58

52
13
50
94
61
38
72
31
34
85
97
57
29
66
80
41
35
59
55
51
64
43
68
84
69
74
48
32
54
65
63
58
42
53
27
3
7
9
87
100
8
70
21
78
36
88
23
56
37
44
22
62
99
18
77
46
26
28
33
11
24
1
2
6
12
91
95
19
20
30
49
79
10
86
71
93
98
47
40
75
81
25
67
89
82
92
45
76
4
5
17
14
15
16
39
60
90
96
73
83

C
LL

47

C
LL

69

C
LL

70

C
LL

48

D
LC

L5
7

D
LC

L1
9

D
LC

L5
6

D
LC

L5
8

Figure 2.1: Two-dimensional hierarchical clusterplots of lymphoma
data. Left plot: Default ordering of samples using hclust. Right plot:
Optimal ordering of samples using optimTree.

CHAPTER 2. OPTIMTREE - REARRANGING DENDROGRAMS 11

1 2 3
2 1
3 5 2
4 3 9 7

Table 2.1: Artificial distance matrix with four samples.

all=TRUE in optimTree invokes the output of the list of all possible dendrograms.
The default is set to all=FALSE to output only the optimal tree.

Continuing the lymphoma example above, Figure 2.3 shows the first four dendro-
grams with smallest sums of distances. The underlying matrix of Euclidean distances
between samples is given in Table 2.2. Function optimTree returns the first den-
drogram in Figure 2.3 which cannot simply be passed on to clusterplot. Within
clusterplot, function as.dendrogram is called which transforms the hclust into a
dendrogram object but does not keep the new ordering. Here, function optimTree.dendrogram

must be applied. The function uses reorder and returns a dendrogram object with
preserved optimal ordering. Figure 2.4 shows results of successive application of
optimTree and optimTree.dendrogram to the lymphoma hclust object. For easily
plotting gene expression data without clusterplot see Section 2.3.

CLL47 CLL48 CLL69 CLL70 DLCL19 DLCL56 DLCL57
CLL48 30.69
CLL69 32.75 18.74
CLL70 31.74 17.32 10.3

DLCL19 35.98 19.76 21.64 19.79
DLCL56 38.08 22.53 23.78 22.43 9.09
DLCL57 35.42 16.46 20.26 19.43 11.09 14.36
DLCL58 40.08 22.17 24.51 23.77 11.01 9.19 12.16

Table 2.2: Euclidean distances of lymphoma samples.

2.3 Plotting expression data

The plotting function optimTree.plot is a convenient wrapper that produced both
expression plots in Figure 2.1. It includes source code taken from package clusterplot
by Mark Wilkinson.

The input is either an expression set of class exprSet or a matrix contain-
ing expression values in the common ordering, that is genes in rows and sam-

CHAPTER 2. OPTIMTREE - REARRANGING DENDROGRAMS 12

4

3

12

1
2

3
4

5
6

15

hclust (*, "average")
a

4

3

1 2

1
2

3
4

5
6

6

hclust (*, "average")
a

H
ei

gh
t

4

3

12

1
2

3
4

5
6

10

4

3

1 2

1
2

3
4

5
6

13

H
ei

gh
t

Figure 2.2: All valid dendrograms resulting from the example distance
matrix. Values on top are sums of distances between neighboring leafs.

CHAPTER 2. OPTIMTREE - REARRANGING DENDROGRAMS 13

C
LL

47

D
LC

L5
7

D
LC

L5
8

D
LC

L1
9

D
LC

L5
6

C
LL

48

C
LL

69

C
LL

705
10

15
20

25
30

35

106.19

hclust (*, "average")
sampDist

C
LL

47

D
LC

L5
7

D
LC

L5
8

D
LC

L1
9

D
LC

L5
6

C
LL

48

C
LL

69

C
LL

705
10

15
20

25
30

35

106.6

hclust (*, "average")
sampDist

H
ei

gh
t

C
LL

47

D
LC

L5
7

D
LC

L5
8

D
LC

L1
9

D
LC

L5
6

C
LL

48

C
LL

69

C
LL

705
10

15
20

25
30

35

107.26

C
LL

47

D
LC

L5
7

D
LC

L5
8

D
LC

L1
9

D
LC

L5
6

C
LL

48

C
LL

69

C
LL

705
10

15
20

25
30

35

107.67

H
ei

gh
t

Figure 2.3: Four dendrograms with smallest sums of distances for the
lymphoma data.

C
LL

47

D
LC

L5
7

D
LC

L5
8

D
LC

L1
9

D
LC

L5
6

C
LL

48

C
LL

69

C
LL

70

5
10

15
20

25
30

35

hclust

C
LL

47

D
LC

L5
7

D
LC

L5
8

D
LC

L1
9

D
LC

L5
6

C
LL

48

C
LL

69

C
LL

70

5
10

15
20

25
30

35

optimTree

H
ei

gh
t

0
5

10
15

20
25

30
35

optimTree.dendrogram

C
LL

47

C
LL

69

C
LL

70

C
LL

48

D
LC

L5
7

D
LC

L1
9

D
LC

L5
6

D
LC

L5
8

Figure 2.4: Dendrograms of lymphoma data with distances stored
in a dist object x. Left plot: Result of y <- hclust(x). Cen-
ter plot: Result of z <- optimTree(y,x). Right plot: Result of
optimTree.dendrogram(z).

CHAPTER 2. OPTIMTREE - REARRANGING DENDROGRAMS 14

52
13
50
94
61
38
72
31
34
85
97
57
29
66
80
41
35
59
55
51
64
43
68
84
69
74
48
32
54
65
63
58
42
53
27
3
7
9
87
100
8
70
21
78
36
88
23
56
37
44
22
62
99
18
77
46
26
28
33
11
24
1
2
6
12
91
95
19
20
30
49
79
10
86
71
93
98
47
40
75
81
25
67
89
82
92
45
76
4
5
17
14
15
16
39
60
90
96
73
83

CLL47 CLL69 CLL70 CLL48 DLCL57 DLCL19 DLCL56 DLCL58

52
13
50
94
61
38
72
31
34
85
97
57
29
66
80
41
35
59
55
51
64
43
68
84
69
74
48
32
54
65
63
58
42
53
27
3
7
9
87
100
8
70
21
78
36
88
23
56
37
44
22
62
99
18
77
46
26
28
33
11
24
1
2
6
12
91
95
19
20
30
49
79
10
86
71
93
98
47
40
75
81
25
67
89
82
92
45
76
4
5
17
14
15
16
39
60
90
96
73
83

C
LL

47

C
LL

69

C
LL

70

C
LL

48

D
LC

L5
7

D
LC

L1
9

D
LC

L5
6

D
LC

L5
8

52
13
50
94
61
38
72
31
34
85
97
57
29
66
80
41
35
59
55
51
64
43
68
84
69
74
48
32
54
65
63
58
42
53
27
3
7
9
87
100
8
70
21
78
36
88
23
56
37
44
22
62
99
18
77
46
26
28
33
11
24
1
2
6
12
91
95
19
20
30
49
79
10
86
71
93
98
47
40
75
81
25
67
89
82
92
45
76
4
5
17
14
15
16
39
60
90
96
73
83

CLL47 CLL69 CLL70 CLL48 DLCL57 DLCL19 DLCL56 DLCL58

52
13
50
94
61
38
72
31
34
85
97
57
29
66
80
41
35
59
55
51
64
43
68
84
69
74
48
32
54
65
63
58
42
53
27
3
7
9
87
100
8
70
21
78
36
88
23
56
37
44
22
62
99
18
77
46
26
28
33
11
24
1
2
6
12
91
95
19
20
30
49
79
10
86
71
93
98
47
40
75
81
25
67
89
82
92
45
76
4
5
17
14
15
16
39
60
90
96
73
83

C
LL

47

C
LL

69

C
LL

70

C
LL

48

D
LC

L5
7

D
LC

L1
9

D
LC

L5
6

D
LC

L5
8

52
13
50
94
61
38
72
31
34
85
97
57
29
66
80
41
35
59
55
51
64
43
68
84
69
74
48
32
54
65
63
58
42
53
27
3
7
9
87
100
8
70
21
78
36
88
23
56
37
44
22
62
99
18
77
46
26
28
33
11
24
1
2
6
12
91
95
19
20
30
49
79
10
86
71
93
98
47
40
75
81
25
67
89
82
92
45
76
4
5
17
14
15
16
39
60
90
96
73
83

CLL47 CLL69 CLL70 CLL48 DLCL57 DLCL19 DLCL56 DLCL58

52
13
50
94
61
38
72
31
34
85
97
57
29
66
80
41
35
59
55
51
64
43
68
84
69
74
48
32
54
65
63
58
42
53
27
3
7
9
87
100
8
70
21
78
36
88
23
56
37
44
22
62
99
18
77
46
26
28
33
11
24
1
2
6
12
91
95
19
20
30
49
79
10
86
71
93
98
47
40
75
81
25
67
89
82
92
45
76
4
5
17
14
15
16
39
60
90
96
73
83

C
LL

47

C
LL

69

C
LL

70

C
LL

48

D
LC

L5
7

D
LC

L1
9

D
LC

L5
6

D
LC

L5
8

−2.5 −1.9 −1.4 −0.82 −0.27 0.27 0.82 1.4 1.9 2.5 −2.5 −1.9 −1.4 −0.82 −0.27 0.27 0.82 1.4 1.9 2.5 −2.5 −1.9 −1.4 −0.82 −0.27 0.27 0.82 1.4 1.9 2.5

Figure 2.5: Three available color schemes for optimTree.plot. Left
plot: col="color1". Center plot: col="color2". Right plot:
col="color3".

ples in columns. Currently, the function uses Euclidean distances both between
genes and between samples and performs hierarchical clustering with average link-
age. Argument optimize=TRUE invokes the search for the optimal dendrogram. If
optimize=FALSE, the default hclust output will be processed. These two options
lead to Figure 2.1. Please note, that the optimization is limited to sample size 15.
If necessary, change the default argument max.samp=15.

Additional arguments affect the plotting style. With row.scale=TRUE, the ex-
pression matrix is scaled gene-wise before plotting (but after clustering). With zlim,
we define the color range. The default is 2. Hence, all (scaled) expression values
exceeding ±2 are encoded in the brightest color. If row.scale=FALSE, a higher
zlim value may be reasonable. Argument col can be set to "color1" (default),
"color2" or "color3". Finally, argument barplot=TRUE produces the encoding
color bar using package GLAD . See Figure 2.5 for the resulting images.

2.4 Limitations

Function optimTree enumerates all valid dendrograms that emerge from the given
one. If the number of samples is large, the computation is time-consuming if not
impossible. With 20 samples, 262144 permutations are possible. Computations with

CHAPTER 2. OPTIMTREE - REARRANGING DENDROGRAMS 15

more than 20 samples might not be feasible any more. For the plotting default, see
Section 2.3.

For larger data sets or optimal rearrangement of genes, an algorithmical approach
is needed. The simpliest search algorithm starts with the given dendrogram and
enumerates all neighbors (dendrograms with one flipped node). If a neighbor has
lower sum of distances, this one is kept as the next starting point. The search results
in a dendrogram with minimal sum of distances among its neighbors. However,
it is not necessarily the optimal choice. The implementation of heuristic search
algorithms for solving the problem of dendrogram rearrangement is part of future
research.

Chapter 3

Evaluating Gene Lists

Author

The functions discussed here written by Martin Held, Matthias Maneck, Jochen
Jäger and Claudio Lottaz, this description by Claudio Lottaz1.

3.1 geneLister - generating gene lists in HTML

Many analysis methods for microarray data generate lists of genes: supervised clas-
sification compute signatures, unsupervised class finding techniques report lists of
supporting genes and differential gene expression detection directly aims for lists of
induced genes. Since thus generated gene lists are often rather long, they are of little
use without supporting annotations.

The geneLister exploits Bioconductor meta-data packages for the microarrays
used in a particular analysis, to generate annotated lists of genes. It can gake lists of
probe-sets as well as objects from twilight2 analyses as input. The provided list holds
gene symbols and names as well as corresponding identifiers from various databases
including GenBank, UniGene, Gene Ontology and KEGG. The database identifiers
are generated as direct links to the corresponding Internet sites.

\small

> library(hgu95av2)

> ids <- ls(hgu95av2ACCNUM)[1:20]

> geneLister(ids, "hgu95av2", HTML=FALSE)

1Contact: claudio.lottaz@molgen.mpg.de
2differential gene expression and local FDR computation package from Bioconductor

16

CHAPTER 3. EVALUATING GENE LISTS 17

By default the method generates HTML code and returns it as a character string.
This HTML code is well suited to be part of an HTML page. The function also
generates anchors for each probe-set, so that links directly to a gene of interest can
be generated.

3.2 geneImager - images with expression data

The function geneImager generates an image for further illustration of gene expres-
sion patterns present in a particular gene set of interest. Similar as the suggestion
by Eisen and others [2], an image with one row per gene and one column per sample
is drawn. Hierarchical clustering and dendrograms can be added optionally, just
as scaling and annotations fpr genes/samples. The following image is generated as
follows:

library(ALL)

library(twilight)

cls <- ifelse(substr(as.character(pData(ALL)[,'' BT''], 1, 1)=='' B'' , 1, 2)

tw <- twilight.pval(ALL, cls)

gl <- rownames(tw$result)[1:50]

geneImager(exprs(ALL)[gl,])

The geneImager can return HTML code with a clickable map. This map defines
clickable regions on the annotations of th genes. The links generated lead to anchors
produced by the geneLister. In order to use this clickable map, the image must
not be scaled.

3.3 gokeggLister - overrepresentation analysis

A common method to explore gene lists on a more global view is to determine over-
represented functional groups of genes. Probe-sets are attributed to one or more bi-
ological processes, molecular function and cellular location with respect to the Gene
Ontology [Ashburner et al.(2000)Ashburner, Ball, Blake, Botstein, Butler, Cherry, Davis, Dolinski et al.],
as well as pathways in the Kyoto Encyclopedia of Genes and Genomes [Kanehisa(1996)].
For each of these terms we can compute a probability that more non randomly many
genes with that given annotation are present in a gene list of interest. This proba-
bility is computed with respect to the hypergeometrical distribution.

For the list of genes gl, generate in the in the geneImager example, overrep-
resentation analysis as described in the paragraph above is computed as easy as
this:

CHAPTER 3. EVALUATING GENE LISTS 18

Figure 3.1: Gene expression patterns illustrated as color codes in an
image. Illustrated on leukemia data published in [1]

CHAPTER 3. EVALUATING GENE LISTS 19

gokeggLister(gl)

This command also returns a peace of HTML code to be included into a HTML
page. The HTML code encodes a table with all detected terms at a p-value below
0.1.

As an additional feature gokeggLister generates induced graphs for detected
GO terms (not for KEGG) as shown in Figure 3.2. From nodes detected as rel-
evant, all parants are searched up to the root. Such trees give an expression,
whether overrepresented GO nodes are closely related or not. The HTML code

Figure 3.2: Induced biological process GO graph for upregulated genes
in gl

returned by gokeggLister includes a clickable map on this graph. In order to
use the graph feature just described, the graph visualization package Rgraphviz

[Gansner & North, 2000] be installed on your system.
There is no correction for multiple testing although in most categories more than

1000 hypotheses are tested. Therefore, only very low p-values should be interpreted.
Correction for multiple testing is non-trivial since almost all of the hypotheses are
wildly dependent.

Chapter 4

Unsupervised Methods

Author

Claudio Lottaz1.

4.1 Consensus Clustering

The function consensusCluster implements the method suggested in [Monti(2003)].
We have also implemented an image method for the computed consensus matrix.

This function performs standard k-means clustering on the data matrix provided.
It returns the result as is from the k-means method. In addition a consensus matrix
is computed from splits of subsamplings of the data. In this matrix each row corre-
sponds to a observation and so does each column. Rows and columns are ordered in
same way such that observations from the same overall cluster are adjacent. In each
position of the matrix, the ratio is stored, how often the two corresponding samples
are attributed to the same cluster by k-means.

For stable clusterings, we expect that the consensus matrix just holds values
close to zero and close to one. square blocks of ones are expected along the diagonal
of the matrix. As summary statistics, a value per cluster and a value per observation
and cluster is computed. To measure the stability of a cluster, the average consensus
values from the consensus matrix are taken for all pairs of observations where both
partners belong to the cluster. Moreover, for observation o and cluster C, the average
consensus values is computed for all other members of cluster C.

Here we compute an example useing the ALL data by Chiaretti et al. [1]. In
this dataset we expect a very clear split between T-cell and B-cell leukemias. The
following computes the corresponding consensus matrix:

1Contact: claudio.lottaz@molgen.mpg.de

20

CHAPTER 4. UNSUPERVISED METHODS 21

> library(ALL)

> data(ALL)

> vars <- apply(exprs(ALL), 1, var)

> e <- exprs(ALL)[rank(vars) > 12525,]

> consClust <- consensusCluster(e, nclass = 2, nsamplings = 500)

..

Thereby we choose only the 100 highest variance genes for clustering. With the
following command the corresponding consensus matrix is plotted:

> image(consClust, main = "Robust Clustering", col = grey(seq(1,

+ 0, -0.01)), outfile = "fig_consClust_robust.png")

null device

1

When we restrict the dataset to B-cells only, it is much more difficult to detect
a clear split and thus the corresponding plot is blurred out as well:

> samples <- 1:66

> vars <- apply(exprs(ALL)[, samples], 1, var)

> e <- exprs(ALL)[rank(vars) > 12525, samples]

> consClust <- consensusCluster(e, nclass = 2, nsamplings = 500)

..

CHAPTER 4. UNSUPERVISED METHODS 22

> image(consClust, main = "Unstable Clustering", col = grey(seq(1,

+ 0, -0.01)), outfile = "fig_consClust_shaky.png")

null device

1

Monti et al. have evaluated this method on a large lymphoma dataset in 2004
[Monti(2004)].

Chapter 5

Odds and Ends

Author

Various authors have contributed the functions discussed here, the maintainer is
Claudio Lottaz1.

5.1 getPubmedEntry - getting citation information

This function takes a single PMID as an argument, queries Pubmed through the In-
ternet (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) and returns the re-
trieved data including the abstract in a list. The names of the list correspond to the
medline abbreviations.

> x <- getPubmedEntry(11674852)

> names(x)

[1] "PMID" "OWN" "STAT" "DA" "DCOM" "LR" "PUBM" "IS" "VI"

[10] "IP" "DP" "TI" "PG" "AB" "AD" "FAU" "AU" "LA"

[19] "PT" "PL" "TA" "JT" "JID" "SB" "MH" "EDAT" "MHDA"

[28] "AID" "PST" "SO"

> x$TI

[1] "Resampling method for unsupervised estimation of cluster validity."

1Contact: claudio.lottaz@molgen.mpg.de

23

CHAPTER 5. ODDS AND ENDS 24

5.2 greenred.colors - colors for green-red cluster

plots

This function uses the hsv to generate a gradiant of colors adequate for red-green
cluster plots. The call allows to specify the number of shades to be generated. The
folowing image illustrates the colors generated.

> image(matrix(1:100, ncol = 1), col = greenred.colors())

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5.3 factorplot - Visualize factor like data

This function takes a matrix or dataframe and regards the content as factor entries.
It then visualizes this matrix so that each factor level gets a unique color and a
legend is plotted to the right hand side.

> library(golubEsets)

> factorplot(pData(golubTrain)[, c(2, 4, 5, 7, 8, 9, 11)])

Chapter 6

Bibliography

[Alizadeh et al.(2000)Alizadeh, Eisen, Davis, Ma, Lossos, Rosenwald, Boldrick, Sabet et al.]
Alizadeh, A. A., M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald,
J. C. Boldrick, H. Sabet, et al. Distinct types of diffuse large b-cell lymphoma
identified by gene expression profiling. Nature, 2000. 403 (6769), 503–11.

[Ashburner et al.(2000)Ashburner, Ball, Blake, Botstein, Butler, Cherry, Davis, Dolinski et al.]
Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,
A. P. Davis, K. Dolinski, et al. Gene ontology: tool for the unification of biology.
the gene ontology consortium. Nat Genet , 2000. 25 (1), 25–29.

[1] S Chiaretti, X Li, R Gentleman et al. Gene expression profile of adult T-cell
acute lymphocytic leukemia identifies distinct subsets of patients with different
response to therapy and survival. Blood, 2004, 103(7).

[2] Eisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein, Cluster analysis
and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 1998.
95 (25), 14863–14868.

[Gansner & North, 2000] Gansner, E. R. & North, S. C. (2000) An open graph vi-
sualization system and its applications to software engineering. Software Practice
and Experience, 30 (11), 1203–1233.

[Kanehisa(1996)] Kanehisa, M. Toward pathway engineering: a new database of
genetic and molecular pathways. Sci & Tech Japan, 1996. 59 , 34–8.

[Monti(2003)] S. Monti, P. Tamayo, J. P. Mesirov, and T. R. Golub. Consensus
Clustering: A Resampling-Based Method for Class Discovery and Visualization
of Gene Expression Microarray Data. Machine Learning, 52:1-2, 2003, pp. 91-118.

25

CHAPTER 6. BIBLIOGRAPHY 26

[Monti(2004)] S. Monti, K. J. Savage, J. L. Kutok, F. Feuerhake, P. Kurtin, M.
Mihm, B. Wu, L. Pasqualucci, D. Neuberg, R. C. Aguiar, P. Dal Cin, C. Ladd, G.
S. Pinkus, G. Salles, N. L. Harris, R. Dalla-Favera, M. Habermann, J. C. Aster, T.
R. Golub, and M. A. Shipp. Molecular profiling of diffuse large B-cell lymphoma
identifies robust subtypes including one characterized by host inflammatory re-
sponse, Blood, Nov. 2004.

	Preprocessing Utilities
	Overview
	Directory structure
	Graphics utilities
	boxplt.cpd and boxplt.plmset.cpd- box plots on expression levels and standard errors
	wimage.cpd - 2 dimensional residual plots
	MvsA.cpd - rank residual plots

	Incremental preprocessing

	optimTree - Rearranging dendrograms
	Introduction
	Implementation
	Plotting expression data
	Limitations

	Evaluating Gene Lists
	geneLister - generating gene lists in HTML
	geneImager - images with expression data
	gokeggLister - overrepresentation analysis

	Unsupervised Methods
	Consensus Clustering

	Odds and Ends
	getPubmedEntry - getting citation information
	greenred.colors - colors for green-red cluster plots
	factorplot - Visualize factor like data

	Bibliography

