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A Stochastic Downhill Search Algorithm for
Estimating the Local False Discovery Rate

Stefanie Scheid and Rainer Spang

Abstract—Screening for differential gene expression in microarray studies leads to difficult large-scale multiple testing problems. The

local false discovery rate is a statistical concept for quantifying uncertainty in multiple testing. In this paper, we introduce a novel

estimator for the local false discovery rate that is based on an algorithm which splits all genes into two groups, representing induced

and noninduced genes, respectively. Starting from the full set of genes, we successively exclude genes until the gene-wise p-values of

the remaining genes look like a typical sample from a uniform distribution. In comparison to other methods, our algorithm performs

compatibly in detecting the shape of the local false discovery rate and has a smaller bias with respect to estimating the overall

percentage of noninduced genes. Our algorithm is implemented in the Bioconductor compatible R package TWILIGHT version 1.0.1,

which is available from http://compdiag.molgen.mpg.de/software or from the Bioconductor project at http://www.bioconductor.org.

Index Terms—Local false discovery rates, stochastic search algorithms, microarray analysis, biology and genetics.
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1 INTRODUCTION

WHILE multiple testing is a well-established field,
statisticians are currently reconsidering its founda-

tions in the light of high dimensional data. Modern high
throughput technologies perform exceptionally large num-
bers of measurements in parallel. Among the most
prominent of such technologies are microarrays used in
molecular biology and clinical research. Microarrays mea-
sure gene expression levels on genome scale. Searching for
differentially expressed genes amounts to testing hypoth-
eses about tens of thousands of variables simultaneously.

In general, the problem setting is as follows: Consider a
microarray experiment with rðtÞ genes all showing about
t-fold increased expression in a comparison of two pre-
defined groups of samples. By a multiple testing procedure,
one can decide whether the level t-fold is significant. In case
it is not, one discards all rðtÞ genes. This is a rushed
conclusion. The number rðtÞ can still be too high to be
explained by random fluctuations. The set of genes is in a
twilight zone, consisting of both induced and noninduced
genes. Being interested in genes in the twilight zone, it is
natural to ask how much daylight is left. This is equivalent
to asking for the probability that a gene is noninduced
conditional on all observations, that is, the entire array of
test statistics for differential gene expression. The local false
discovery rate introduced by Efron et al. [7] estimates this
conditional probability. While methods which aim at
controlling error rates detect only the beginning of twilight,
local false discovery rates describe the entire course of a
sunset.

The paper is organized as follows: In Section 2, we
review the concept of the local false discovery rate and put

it into context with other approaches to the multiple testing
problem. Section 3 reviews existing estimators of the local
false discovery rate. In Section 4, we introduce the stochastic
downhill search algorithm. We compare the algorithm to
previously described estimators in a simulation-based
study in Section 5. In Section 6, we apply our estimator to
a clinical microarray data set. The discussion contains a
summary of our findings and some concluding remarks.

2 PRELIMINARIES

The local false discovery rate is conceptually different from
traditional approaches to multiple testing. It is not a
standard error measure of a test procedure, but a
probability conditioned on all observed data, like it is
commonly used in Bayesian analysis. This section reviews
common concepts in multiple testing and is thereby
redeveloping the idea of the local false discovery rate step
by step.

Our discussion is set in the following framework: For
samples dividing into two distinct biological conditions, A
and B, expression values of M genes are measured as
intensity values on a microarray. For each gene i ¼
1; . . . ;M, we compute a score ti quantifying its differential
gene expression between the two conditions. We assume
that a high absolute score corresponds to differential
expression. For a cutoff value t, let rðtÞ be the number of
genes with a score of t or higher:

rðtÞ ¼ #fijti � tg: ð1Þ
Statistical analysis needs to be based on a model for

expression data. Here, we follow the random effects model
of Storey [21]. In general, there will be both induced and
noninduced genes and the rate of induction will be different
from gene to gene. Gene i can either be noninduced, in this
case, the observed score ti should be close to 0, or, if it is
induced by some value �i 6¼ 0, then the observed score
should be close to �i. Of course, we do not know which
genes are induced, nor do we know the �i.
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We treat the score for differential gene expression as a
random variable T and model its distribution by the
following random experiment. In the first step, we
randomly decide whether the gene is induced or not by
sampling from a Bernoulli variable H with success
probability �0. In a second step, we draw a score T from
some distribution PX with expectation 0 if H ¼ 0 and from
a different distribution PY with expectation different from 0
if H ¼ 1. The score T can then be decomposed into

T ¼ X IfH¼0g þ Y IfH¼1g; ð2Þ

where If�g is an indicator variable. We apply the model to all
genes i ¼ 1; . . . ;M, and, hence, are given a set of random
variables T1; . . . ; TM with Ti ¼ Xi IfHi¼0g þ Yi IfHi¼1g. The
distribution of each Ti depends on the joint distribution of
the ðHi; Xi; YiÞfi¼1;...;Mg under some data generating model
P . We assume that:

1. The a priori probability P ½Hi ¼ 0� ¼ �0 that gene i is
not induced is the same for all genes. This allows us
to interpret �0 as the expected proportion of
noninduced genes on the microarray.

2. E½Xi� ¼ 0 and E½Yi� ¼ �i 6¼ 0 for all i ¼ 1; . . . ;M.

The joint distribution of variables Ti determines the
distribution of the random variables RðtÞ and V ðtÞ which
are defined as

RðtÞ ¼
XM

i¼1

IfTi�tg and V ðtÞ ¼
XM

i¼1

IfTi�t;Hi¼0g: ð3Þ

2.1 Relaxing the Error Measure and Gaining Power

For a fixed level t, we can ask:

A.1.Can a score at level t or higher be a chance artifact?
A.2.What fraction of the rðtÞ genes with score t or higher

is expected to be genuinely induced?

Note that the first question emphasizes the level of
differential expression t, while the second question empha-
sizes the number of genes rðtÞ exceeding this level. Even if
the first question needs to be answered with yes because the
score level t can be reached by random fluctuations with
high probability, the number rðtÞ might be much higher
than expected by random fluctuations alone. In this case, it
is reasonable to conclude that a certain fraction of genes is
genuinely induced.

Question A.1 fits into the setting of classical multiple
hypothesis testing. It amounts to calculating the joint type I
error rate under the data generating model P when
rejecting all genes with Ti � t, which equals P ½V ðtÞ > 0�.
This error rate is also called the family-wise error rate
FWER and amounts to adjusting p-values from single gene
tests for multiplicity. Several adjustment procedures have
been suggested and evaluated on expression data. For a
review, see Dudoit et al. [6]. In the context of several
thousand genes, control of the family-wise error rate
typically comes at the price of an impractically low power
of the test and more relaxed criteria are needed [3]. Shifting
the emphasis of statistical analysis from the level of test
statistics to the number of genes exceeding the level, as is

done in question A.2, is equivalent to switching from
p-values to false discovery rates.

Benjamini and Hochberg [3] define the false discovery
rate as

FDRðtÞ ¼ EP
V ðtÞ
RðtÞ IfRðtÞ>0g

� �
ð4Þ

with V ðtÞ and RðtÞ as given in (3). In the case that there are
no induced genes at all, we have FWERðtÞ ¼ FDRðtÞ.
However, if there are both induced and noninduced genes,
the FDR is a relaxed test criterion. A score level t with
FDRðtÞ � � can very well be exceeded due to random
artifacts. However, among the RðtÞ excess, we expect only a
fraction of � false positives. Using false discovery rates, we
allow for some false positive genes but keep control of their
proportion.

2.2 Replacing Generating Data Models by Large
Sets of Observed Data

For the further development of the false discovery rate, we
discuss two variations of question A.2 above. Given a fixed
score threshold t, we ask:

B.1. When generating data from the model P and
collecting all genes with scores above t, what is the
average fraction of false positives among them?

B.2. Given the complete data from a microarray experi-
ment, what is the expected fraction of false positives
among all genes with scores equal or higher than t,
given that there are rðtÞ of them?

The first question emphasizes the generating model,
while the second emphasizes the large set of observed
scores. Question B.1 is based on the idea of using the false
discovery rate as a frequentist error measure, like in
Benjamini and Yekutieli [4] and Genovese and Wasserman
[10]. For a significance level �, Benjamini and Hochberg [3]
and Reiner et al. [18] describe threshold rules tð�Þ. When
resampling from the generating distribution P many times
and collecting all genes with Ti � tð�Þ, it is guaranteed that
there is, on average, no more than a fraction of � false
positives among them, no matter what the underlying
model P is. This analysis is only driven by the joint
distribution of RðtÞ and V ðtÞ under the data generating
model P and is independent from the actually observed
number rðtÞ in a given microarray experiment. If the
observed number rðtÞ differs from its expectation EP ½RðtÞ�,
interpreting the false discovery rate � as the proportion of
false positives is misleading. Shifting the emphasis from the
generating model in question B.1 to the actually observed
data in question B.2 is equivalent to switching from
frequentist analysis to conditional approaches including
Bayesian analysis.

The first attempt to interpret the false discovery rate in a
Bayesian like setting can be found in Storey [21] in a
nonconditional approach. The author modifies the defini-
tion of the false discovery rate by Benjamini and Hochberg
[3] and introduces the positive false discovery rate as

pFDRðtÞ ¼ EP
V ðtÞ
RðtÞ jRðtÞ > 0

� �
: ð5Þ
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He also introduces the term q-value. Similar to p-values or
adjusted p-values, a q-value can be assigned to each gene and
denotes the smallest positive false discovery rate that can be
reached if we include this gene into any list of significant
genes.

The author shows that, for independent or weakly
dependent genes, the pFDR can be rewritten as

pFDRðtÞ ¼ P ½H ¼ 0 jT � t� ð6Þ

¼ P ½H ¼ 0� P ½T � t jH ¼ 0�
P ½T � t� : ð7Þ

Although (6) has a mathematically simple form, we find
it hard to interpret statistically. Note that pFDRðtÞ, like the
original FDRðtÞ, only depends on the data generating
model P and not on the observed scores ðtiÞfi¼1;...;Mg. The
conditional probability on the right-hand side of (6) is not a
real posterior probability, where conditioning on all
relevant observations is the goal. The indicator T � t can
hardly be considered all relevant information available. The
term pFDRðtÞ depends on the counts RðtÞ and V ðtÞ. Since
RðtÞ ¼ rðtÞ can be observed, a more intuitive measure is the
conditional false discovery rate introduced by Benjamini
and Hochberg [3] as

cFDR ¼ EP
V ðtÞ
RðtÞ jRðtÞ ¼ rðtÞ
� �

ð8Þ

¼ EP ½V ðtÞ jRðtÞ ¼ rðtÞ�
rðtÞ : ð9Þ

For a comparison between these false discovery rate
variants, see Tsai et al. [23].

2.3 From the Significance of Lists of Genes Back to
the Significance of Single Genes

We continue with two variations of question B.2. Given the
complete data from a microarray experiment and a fixed
gene i0 with a score of t:

C.1.What is the expected fraction of false positives
among all genes with scores equal or higher than t?

C.2.What is the probability that gene i0 is among these
false positives?

In the previous section, we have suggested using the
cFDR for answering question C.1. Given a list of candidate
genes, biologists typically pick a few of them that appear
interesting to them. In this case, it is question C.2 and not
question C.1 we are interested in. The importance of the
difference was first pointed out by Finner and Roters [9]. It
becomes apparent in the following scenario: Assume we
have 100 genes with scores equal or higher than t, 99 of
them with ti � t and one gene i0 with a score only slightly
above t and cFDR � 0:01. Since cFDR directly depends on
the number rðtÞ of scores equal or higher than t, it is a
property of the entire list of 100 genes including gene i0. We
expect only one false positive among the 100 genes. It is
misleading to conclude that each gene in the list of 100 has a
probability of 0.01 for being false positive. This probability
should not be considered constant among the 100 genes.
Certainly, gene i0 is the most likely candidate for being the

false positive expected according to the cFDR. The cFDR is
a property of a list of genes with little implications on the
uncertainties associated to single genes inside this list.

This last obstacle is overcome by the concept of the local
false discovery rate introduced by Efron et al. [7]. The local
false discovery rate aims at estimating the probability that
gene i is false positive given its observed score ti ¼ t,
conditional on the vector of all observed scores. The idea is
usually formalized by the mixture model

fðtÞ ¼ �0 f0ðtÞ þ �1 f1ðtÞ; ð10Þ
where fðtÞ is the density of scores for all genes on the chip.
The mixture density is decomposed into f0, the score
density of genes with Hi ¼ 0, and f1, the density under
differential expression (Hi ¼ 1). The factor �0 denotes the
unknown global proportion of noninduced genes and
corresponds to P ½H ¼ 0� in (7). Factor �1 is simply 1ÿ �0.
With the notation of (10), the local false discovery rate can
be defined as

fdrðtÞ ¼ �0
f0ðtÞ
fðtÞ : ð11Þ

The local false discovery rate can also be interpreted as
the posterior probability of nondifferential gene expression
[7]. Estimating fdrðtÞ amounts to estimating all terms on the
right-hand side of (11). The density fðtÞ directly corre-
sponds to the complete vector of scores ðtiÞfi¼1;...;Mg and can
be estimated for example by smoothing techniques. By
doing so, the local false discovery rate is not determined by
the data generating model P but depends directly on the
observed data vector. In this sense, it is a conditional false
discovery rate like the cFDR. However, the density f0ðtÞ
needs to be determined by some data generating model,
typically by permutations. Finally, the prior �0, describing
the total proportion of noninduced genes on the chip, can
either be determined by an expert, as is done in standard
Bayesian analysis, or it can be estimated from the data itself,
as is done in empirical Bayesian analysis. Like Efron et al.
[7], we will follow the empirical Bayes approach.

3 ESTIMATORS OF THE LOCAL FALSE DISCOVERY

RATE

There are several papers on estimating the local false
discovery rate. The models in [2], [5], [11], [14], [16], and
[17] share the assumption that there exists a transformation
W of score T , such that U ¼WðT Þ is uniformly distributed
in ½0; 1� across all genes with Hi ¼ 0. In fact, this assumption
is not restrictive and the models of Efron et al. [7] and
Scheid and Spang [19] can be easily adopted to it. In
Section 6, we will review how the transformation can be
constructed using permutations of class labels. The trans-
formation W amounts to mapping scores to associated
p-values in a single gene test scenario. Since we do not
interpret these numbers as p-values, we also omit calling
them so. In terms of observed u-values ðuiÞfi¼1;...;Mg and a
cutoff value u, we write the mixture model as

fðuÞ ¼ �0 1þ �1 f1ðuÞ; ð12Þ
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where 1 denotes the uniform density on ½0; 1�. The local false
discovery rate can be written as

fdrðuÞ ¼ �0

fðuÞ : ð13Þ

Equation (12) defines a mixture model with a fixed
component, the uniform distribution, and an unknown
component f1ðuÞ, the distribution of u-values of induced
genes. For simplicity, we will discuss all approaches in the
context of a mixture model with a uniform component, also,
if the original discussion is on nontransformed scores.
Additional assumptions on f1ðuÞ are needed for identifying
the mixture parameter �0. The literature describes two types
of approaches: The first uses fully parametrized models for
f1ðuÞ, which ensure by the choice of model that �0 can be
identified. The second type of models are nonparametric
with respect to f1ðuÞ and employ additional assumptions on
f1ðuÞ and �0 to derive a unique mixture model.

Pounds and Morris [17] establish a fully parametric
mixture model by choosing a single parameter beta
distribution for the induced genes and estimate the
unknown parameters including �0 by maximum likelihood.
Allison et al. [2] describe a more general version of the
uniform-beta mixture model by allowing finite mixtures of
two-parameter beta distributions for the induced genes.
Model selection, with respect to the number of beta
components, is done using a bootstrap approach. Liao et
al. [14] describe a local version of the uniform-beta mixture
model. The authors bin the u-values and fit separate models
similar to that of Pounds and Morris [17] for each bin. For
model fitting, they use a full Bayesian model with conjugate
prior distributions to derive the joint posterior distribution
of all model parameters, including �0.

Nonparametric models for f1ðuÞ need additional as-
sumptions. Efron et al. [7] assume that

�0 � min
t

fðtÞ
f0ðtÞ

� �
: ð14Þ

Note that Efron et al. [7] do not use the transformation W
and the associated assumption of a uniform component in
the mixture model. Using the transformation W , their
assumption simplifies to

�0 � min
u

fðuÞf g: ð15Þ

The authors suggest estimating fðuÞ by smoothed logistic
regression and then using the upper bound minuff̂fðuÞg as
an estimator for �0. Pounds and Cheng [16] also employ (15)
in the context of a mixture model with a uniform
component for the noninduced genes. However, they use
a spacing LOESS histogram estimator for estimating fðuÞ.

Factor �0 is the Bayesian prior probability P ½H ¼ 0�.
Since it is estimated using the data, the procedures of Efron
et al. [7] and Pounds and Cheng [16] are empirical Bayes
methods. Assumption (15) is equivalent to assuming that
f1ðuÞ has no uniform component. In case it has, the method
of Efron et al. [7] overestimates �0. Do et al. [5] criticize the
biased estimation of �0 and develop a full nonparametric
Bayesian mixture model using Dirichlet processes. Instead
of a data driven plug-in estimate of �0, they impose a
uniform prior distribution on it.

In the context of the global false discovery rate, Genovese
and Wasserman [11] assume, in addition to the upper bound
(15), that f1ðuÞ is monotonously decreasing, implying:

min
u

fðuÞf g ¼ f1ð1Þ: ð16Þ

Equation (16) implies that �0 can be determined by
estimating f1ð1Þ. This is also the strategy suggested by
Storey and Tibshirani [22], who describe a smoothed
extrapolation-based estimator for f1ð1Þ. The original paper
of Tusher et al. [24] contains a simplified version of the
extrapolation-based estimator. A review on various other
estimators of �0 can be found in Ferkingstad et al. [8].

In Scheid and Spang [19], we transfer the approach of
Tusher et al. [24] from global to local false discovery rates
by binning t-values, in this case Wilcoxon ranksum scores,
and applying the false discovery rate concept with each bin
as a predefined rejection area. The proportion �0 is
calculated globally as in Tusher et al. [24].

4 ESTIMATION OF THE LOCAL FALSE DISCOVERY

RATE VIA STOCHASTIC DOWNHILL SEARCH

Here, we introduce a novel estimator for the local false
discovery rate that is based on an algorithm which splits all
genes into two groups, representing induced and nonin-
duced genes, respectively. Starting from the full set of genes,
we successively exclude genes until the u-values of the
remaining genes look like a typical sample from a uniform
distribution. Of course, we cannot conclude that the
individual genes in the first set are really the induced genes
and those in the second set are the noninduced genes.
However, the size of the two subsets of genes gives rise to an
estimator for �0 and the local false discovery rate can be
estimated by the numbers of observed scores in the two sets.
The obvious identification problem for �0 is addressed by
searching the largest set of genes such that the distribution
of u-values can still pass as a sample from a uniform. We call
the algorithm SEP for successive exclusion procedure.

The procedure works as follows: We divide all genes into
two sets. Let J denote the set of indices representing
noninduced genes. Let FJ be the empirical cumulative
distribution function of the set of u-values ðuiÞfi2Jg. Our goal
is to find the largest set J such that FJ is sufficiently close to
a uniform distribution. For a given set J , we measure the
goodness-of-fit using the Kolmogoroff-Smirnoff score
SðJÞ ¼ maxi2J jFJðuiÞ ÿ uij. In addition, we need a size
dependent component that guarantees a high Kolmogoroff-
Smirnoff score without removing more values than neces-
sary from the uniform part. This results in a regularized
fitting approach using an objective function composed of fit
component SðJÞ and a size component R�:

gðJ; �Þ ¼ SðJÞ þR�ðjJ jÞ ð17Þ

with R�ðjJ jÞ ¼ �
M ÿ jJ j
M

logðM ÿ jJ jÞ; ð18Þ

where R�ðjJ jÞ is strictly monotone in the size of the set J .
For � ¼ 0, we have R�ðjJ jÞ ¼ 0 and, hence, the objective

function only depends on the fit of the empirical distribu-
tion of the set ðuiÞfi2Jg to the uniform distribution. Assume
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that no gene on the chip is induced. In this case, jJ j ¼M
and the empirical distribution FJ is a typical sample from a
uniform distribution, but the fit is gðJ; 0Þ 6¼ 0 due to the
sample variance of FJ . One can still find genes to exclude

such that FJ gets closer to identity, hence constructing
distributions which are even more “uniform” in terms of
goodness-of-fit than a typical sample from a uniform. This

overfitting effect leads to a systematic underestimation of
�0. Note that in the overfitting phase we will only

marginally improve the fit to the uniform, while jJ j and,
hence, b�0�0 can still change significantly. When choosing
� > 0, improving the fit by exclusion comes at a price in the

size component R�ðjJ jÞ. Hence, the estimation of �0 can be
tuned by �.

Our strategy is to adaptively choose � such that only

significant improvements of the fit component are accepted
and, hence, overfitting is avoided. For small �, the fit values
do not differ significantly, which indicates overfitting. With

larger �, we observe significantly worse fit values indicating
underfitting. Our goal is to choose � at the transition of over

and underfitting. The calibration of � is given in detail in
Table 1.

Given a candidate set J , we randomly choose a single
gene i from the chip. If i 2 J , let J 0 ¼ Jnfig, otherwise, let
J 0 ¼ J [ fig. If gðJ 0; �Þ < gðJ; �Þ, let J ¼ J 0, otherwise, J
remains unchanged. Starting with the full set of genes, this
procedure is iterated until the number of unsuccessful trials
for a new configuration exceeds twice the total number of
genes M. Given the final configuration J , we set

b�0�0 ¼
jJj
M
: ð19Þ

We divide the interval ½0; 1� into 100 equidistant bins and

derive a corresponding histogram estimator ðhðlÞÞfl¼1;...;100g
for the density of the complete set of u-values and a

histogram estimator ðh0ðlÞÞfl¼1;...;100g for the subset of genes

indexed by J . For all l, we set

qðlÞ ¼ b�0�0
h0ðlÞ
hðlÞ ð20Þ
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and estimate the local false discovery rate by interpolating
the vector ðqðlÞÞfl¼1;...;100g using a smoothing spline with
7 degrees of freedom and decreasing weights 1=cðlÞ, where
cðlÞ denotes the center of bin l. In our experience, this choice
of smoothing parameters satisfyingly corrects for increasing
variance of the histogram estimates. Table 1 summarizes the
overall algorithm.

The stochastic downhill algorithm produces local mini-
ma of the objective function. Moreover, it will lead to
different local minima when repeated several times.
However, the resulting estimates of the local false discovery
rate are very stable among reruns. In order to assess the
variability of these estimates, we run the algorithm on
1,000 bootstrap samples of the original set of u-values to
produce bootstrap averages as point estimators and boot-
strap confidence intervals as measures of uncertainty.

5 SIMULATION STUDY

For evaluating the SEP algorithm and comparing it to
existing approaches from the literature, we use a controlled
simulation setting where the true �0, f0, and f1 are known.
The simulation is set up such that the resulting u-value
distribution is similar to those that we typically observe in
applications to microarray data. For simplicity, we simulate
u-values rather than gene expression values.

We set �0 ¼ 0:7 and compose the distribution of induced
genes from two beta distributions reflecting moderate
differential expression plus a small amount of very low
values from a normal distribution reflecting high differ-
ential expression. Overall, we have the mixture density

fðuÞ ¼ 0:7U ½0; 1� þ 0:15Bð0:5; 10Þ
þ 0:1Bð2; 5Þ þ 0:05 jNð0; 0:01Þj; ð21Þ

where U ½0; 1� is a uniform distribution with support ½0; 1�,
Bða; bÞ a beta distribution with shape parameters a and b,
and jNð�; �Þj an absolute normal distribution. The para-
meters are chosen such that 25 percent of the u-values reflect
moderate to high induction modeled by the two beta
distributions. The absolute normal distributed values
correspond to highly over or under-expressed genes. From
(21), we randomly draw 10,000 values. Throughout this

section, these are kept fixed to simulate a set of “observed”
u-values and all further analysis refers to them.

First, we monitor the performance of our algorithm for
various choices of the regularization parameter �. From the
mixture model (21), we target �0 ¼ 0:7. The left plot in Fig. 1
shows boxplots of the distributions of estimated �0-values
across bootstrap samples of size 500 for various choices of �.
The small size of 500 was chosen to keep the computation
efficient. The horizontal line indicates the target value of 0.7.
One can clearly observe that, for small choices of �,
proportion �0 is underestimated due to overfitting, while
large numbers of � lead to significantly overestimated
values of �0. On the right plot of Fig. 1 are boxplots of the
corresponding fit values. For small �, one can observe an
almost constant plane of small fit values indicating that, for
all these choices of �, density bf0f0 is approximately uniform.
Note that by comparing the two plots, we can observe that
the constant area in the right plot corresponds to the
overfitting area in the left plot and that the right end of the
constant area matches with the transition between over and
underfitting. Our algorithm picked � ¼ 0:035, which yields
b�0�0 ¼ 0:696 averaged over 1,000 bootstrap samples of size
10,000. The border between over and underfitting at � ¼
0:035 is indicated by the vertical line in both plots.

We apply SEP on 1,000 bootstrap samples of the set of
simulated u-values. The left plot of Fig. 2 shows the
performance of the algorithm. On the x-axis are u-values
and on the y-axis is 1ÿ fdr, the proportion of induced
genes. The gray line and the background histogram are
derived directly from the simulation model. The gray line is
calculated from the nonuniform components in (21). The
background histogram shows the observed proportion of
u-values resulting from nonuniform components in the
simulation experiment.

The bootstrap average of local false discovery rate
estimated by SEP is shown as a black solid line with
95 percent bootstrap confidence intervals shown as dashed
lines. The estimated local false discovery rate approximates
the target line very well. The mean squared difference
between the two lines is about 0.0012 with a standard
deviation of 0.002. The highest observed absolute difference
is about 0.114, indicating that the maximal error in
estimating the proportion of induced genes at a certain
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Fig. 1. Effect of penalty term on estimator b�0�0 and fit component S. Each boxplot contains values from 100 bootstrap samples of size 500. The vertical

line indicates the border between over and underfitting found by SEP. Left: Estimator b�0�0. The horizontal line indicates the target �0. Right: Fit

component S.



u-level is not larger than 12 percent. From a practical

perspective, this performance is satisfying.
On the simulated set of u-values, we compare SEP to four

other methods:

1. The beta-uniform mixture approach BUM of
Pounds and Morris [17] using the S-Plus library
post-bum-library.ssc available from http://
www.stjuderesearch.org/statistics/BUM/ and de-
fault settings as given in the manual [15].

2. The piecewise beta-uniform mixture approach
GeneMix by Liao et al. [14] using the R function
gene_mixture.r available from http://www.
geocities.com/jg_liao/software/ with parameters
as given in the simulation part of Liao et al. [14].
We set the number of iterations to 300 and change
the source code to output b�0�0.

3. The empirical Bayes approach EBA by Efron et al.
[7]: The original paper applies logistic regression on
observed and permuted test statistics which simu-
late the null distribution. In order to adapt it to the
setting of our simulations, we altered the procedure
to work on u-values. Details are given in the
Appendix.

4. The spacings LOESS histogram approach SPLOSH
by Pounds and Cheng [16] using the S-Plus function
splosh-code.ssc available from http://
www.stjuderesearch.org/statistics/splosh.html with
default settings.

For a fair comparison, we use averages from more than

1,000 bootstrap samples for all these methods in addition to

cases where this is not suggested in the original paper.

Computations used R version 1.8.1 and S-Plus version 4.5.

We were not able to include the methods of Allison et al. [2]

and Do et al. [5] because no complete software packages are

available.
In the right plot of Fig. 2, we compare the performances

of the four competing methods. The most important

observation is that none of the methods performs badly.

BUM performs worse, which is not surprising since the

nonnull part of (21) contains at least two beta distributions

instead of one. SEP and EBA perform best and are hard to

distinguish. Table 2 quantifies the performances further.

For each method, the table shows the estimators’
performances in terms of mean squared difference with
standard deviation and maximum absolute difference to the
targeted local false discovery rate. In terms of mean squared
difference, GeneMix performs best, while in terms of
maximum absolute difference, SPLOSH has a small
advantage. However, the methods’ performances do not
differ substantially. GeneMix displays a much rougher 1ÿ
fdr curve which is inconsistent with the sample variability
shown in the background histogram of Fig. 2. It is not a
general shortcoming of the method but, rather, is due to the
recommended default values for smoothing parameters.

Fig. 2 also shows that all methods capture the shape of
density f1 well. The main difference of the methods is a
vertical shift of estimated 1ÿ fdr curves indicating differ-
ences in estimating �0. Fig. 3 shows boxplots of bootstrap
estimates b�0�0. The target value 0.7 is marked by a horizontal
line. All methods except SEP severely underestimate �0.
Also, the SEP estimator has smallest variance among all
nonparametric models.

In addition, we test the algorithm’s performance under
the complete null hypothesis by applying SEP on a sample
of uniformly distributed values which represent u-values

from noninduced genes only. Here, we do not want to
exclude any values in order to estimate the percentage �0

close to the target value 1. This setting evaluates the
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Fig. 2. Comparison of different estimators on simulated u-values. Lines indicate the targeted and estimated local false discovery rate, with the latter

averaged over 1,000 bootstrap estimates. The background histogram shows the observed proportion of simulated nonuniform u-values.

Left: Successive exclusion procedure. Right: Compared methods.

TABLE 2
Performance of Different Estimators on Simulated u-Values

Mean and standard deviation of squared differences and maximum
absolute difference of bootstrap mean to the local false discovery rate.



performance of the algorithm’s penalty term or, rather, the
procedure that calibrates the penalty parameter �. We
randomly draw 10,000 values from a uniform distribution,
apply SEP, and repeat this procedure 100 times. The
percentage �0 is estimated to be 0.99 on average with a
standard deviation of 0.0084.

6 APPLICATION TO CLINICAL DATA

In this section, we give one application of our algorithm to
real clinical microarray data. The data set consists of
327 patients with pediatric acute lymphoblastic leukemia
[25]. The samples divide into cytogenetically distinct
subgroups. We compare two types of chromosomal
rearrangement, that is, 15 cases with fusion protein BCR-
ABL and 27 cases with fusion protein E2A-PBX1 against
18 normal cases. The latter patients have acute lympho-
blastic leukemia but do not show any of the tested
chromosomal aberrations.

The study used Affymetrix oligonucleotide array
HG_U95Av2 coding for 12,625 transcripts. Each transcript
is represented by a probe set containing 16-20 probe pairs. The
probe pair consists of a perfect match and a mismatch probe.
These probes are oligonucleotides of length 25. The perfect
match probe is complementary to the target transcript. The
mismatch probe is identical except for a change of the
13th nucleotide. Mismatch probes are assumed to reflect
nonspecific binding and are used to model the background
expression. The following preprocessing steps are divided
into background correction, normalization on probe level,
and, finally, summarization of probes within a probe set to
output one intensity value per transcript and chip.

The background is calculated similarly as in the
Affymetrix software Microarray Suite 5.0 [1]. The only
difference is that we do not use Affymetrix’s correction to
avoid negative values. After background correction, we
normalize on probe level using the R package VSN with the
variance-stabilizing procedure of Huber et al. [12]. The VSN
package is part of the R/Bioconductor project and is
available from http://www.bioconductor.org. Perfect
match probes within a probe set are summarized by the
median polish method introduced by Irizarry et al. [13]. For
each probe set, an additive model with probe set, chip, and
overall effect is fitted using a robust median polish

procedure. Mismatch probes are not taken into account at
all. Finally, gene expression intensities correspond to the
estimated chip effects plus the overall effects.

The variance-stabilizing method gives us expression
values on an additive scale, that is, on inverse hyperbolic
sine (arsinh) scale. This scale is additive in the sense that, for
highly expressed genes, differences in normalized data
correspond to fold changes in original data. In fact, for
highly expressed genes, the inverse hyperbolic sine approx-
imates the logarithm plus a constant. For lower expressed
genes log and arsinh differ substantially. We use the score

Ti ¼ ���i ÿ ���i; ð22Þ
where ���i and ���i are the mean expression values on the
arsinh scale.

When scoring differential gene expression, logarithmic
data can be highly variable for lowly expressed genes. This
leads to the problem that fold change estimates are unstable
and sensitive to background estimation. More concretely, if
one measures a nonexpressed gene twice, one ends up with
two small numbers where the first can easily be ten times
higher than the second. Note that data on arsinh scale does
not show the instabilities in low expression regions because
the procedure reduces the mean-variance dependence.

It is often suggested to take the gene-wise variability into
account by using t-test scores for logarithmic data. This
requires the estimation of the variance of each individual
gene. It has been observed by several authors that lists of
differentially expressed genes can easily be corrupted by
frequently underestimated variances and several regular-
ization procedures have been suggested [7], [20], [24]. We
suggest not to use gene-wise variances at all. While this
leads to a loss of information, it gives us more intuitive fold
change type scores.

Our method is based on u-values, not on scores. To obtain
u-values, we follow Tusher et al. [24] and Efron et al. [7] and
use permutations of class labels. We use 10,000 balanced
permutations to calculate u-values. For each gene, we
compute fold change equivalent scores based on the
original class label vector, as well as for each permuted
vector. The u-value of a gene is then given as the percentage
of absolute permutation scores exceeding the absolute
original score. These u-values were then submitted to SEP
with 1,000 bootstrap runs. Again, local false discovery rates
are estimated as bootstrap averages. In addition, we
calculate 95 percent bootstrap confidence intervals.

Fig. 4 and Fig. 5 show the estimated local false discovery
rates with 95 percent bootstrap confidence intervals both on
linear and on logarithmic scale. We have chosen the linear
scale to show the overall shape of the local false discovery
rate curve and the logarithmic scale to visualize the local
false discovery rate, especially in regions of highly induced
genes. The ticks at the bottom are 1 percent quantiles of
u-values to show how these values are distributed along the
x-axes. Fig. 6 contains boxplots of the corresponding
bootstrap estimates b�0�0.

Both settings suggest large amounts of differential gene
expression with bootstrap medians of 0.85 (BCR-ABL
versus normal) and 0.78 (E2A-PBX1 versus normal) for
proportion �0, compare to Fig. 6. Following the estimates in
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Fig. 3. Comparison of different methods on simulated u-values. Boxplots

show 1,000 bootstrap estimators b�0�0 for each method. The solid line

indicates target �0.



Fig. 4 and Fig. 5, the percentage of induced genes decreases
quickly in both cases. No differential gene expression is
expected for genes with u-values greater than 0.6. The
penalty parameters were found to be � ¼ 0:025 for BCR-
ABL and � ¼ 0:045 for E2A-PBX1.

In Table 3, we compare local false discovery rates to the
two most widely used concepts in multiple testing: the
family-wise error rate, described by adjusted p-values, and
the positive false discovery rate, described by q-values.
Recall from Section 2 that the adjusted p-value is the family-
wise error rate that is reached when rejecting the corre-
sponding gene with a certain multiple testing procedure.
The q-value is defined as the smallest positive false
discovery rate that is reached when including the corre-
sponding gene into the list of significant genes. We calculate
q-values as described in Remark B in Storey and Tibshirani
[22] and Bonferroni adjusted p-values ~ppi ¼ minðM � ui; 1Þ
with M ¼ 12; 625 being the number of genes under
examination. Note that u-values correspond to nonadjusted
p-values. The first column of Table 3 contains selected
percentages of induced genes which corresponds to the
posterior probability of differential gene expression, that is,
1ÿ local false discovery rate.

7 DISCUSSION

We have argued that the local false discovery rate,
pioneered by Efron et al. [7], is an appropriate measure of
statistical significance for large-scale multiple testing

encountered in microarray analysis. It is characterized by
the following three features:

1. It relates to the number rðtÞ of genes at a certain level
t and not to t itself.

2. It is conditional in the sense that it is constructed
from observed data and not from a data generating
model.

3. It is local in the sense that it describes the
significance of single genes and not of entire lists
of genes.

We have proposed a novel algorithm to estimate the local
false discovery rate based on a stochastic downhill
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Fig. 5. Leukemia data: E2A-PBX1 versus normal. SEP bootstrap estimates and 95 percent confidence intervals of local FDR. Bottom ticks mark
1 percent u-value quantiles. Left: Linear scale. Right: Logarithmic scale.

Fig. 6. Leukemia data: Boxplots with bootstrap estimates b�0�0 for each
experimental setting.

Fig. 4. Leukemia data: BCR-ABL versus normal. SEP bootstrap estimates and 95 percent confidence intervals of local FDR. Bottom ticks mark
1 percent u-value quantiles. Left: Linear scale. Right: Logarithmic scale.



procedure. In comparison to other methods, the algorithm
performs compatibly in detecting the shape of the local false
discovery rate curve and has a smaller bias with respect to
estimating the overall percentage of noninduced genes �0.

In application to clinical data, we have shown that the
local false discovery rate is sensitive to changes in gene
expression impossible to detect by classical multiple testing.
Note that, in Fig. 4 and Fig. 5, the method is sensitive to
surprisingly large u-values. It might appear confusing that
the 75 percent level is reached for u-values greater than 0.01
in the E2A-PBX1 comparison. These genes are not sig-
nificantly induced in the context of adjusted tests and still
we estimate their odds for being induced as 3:1, see Table 3.
These discrepancies reflect the conceptional differences
between classical p-value-based multiple testing and local
false discovery rates. Both are measures of uncertainty, but
the concepts of uncertainty are different, as we have
explained in Section 2. They are complementary and not
competing concepts. Consequently, we do not give recom-
mendations to prefer one over the other. However, if one
chooses to estimate the local false discovery rate, we believe
that our approach is competitive.

There is an important caveat with all estimators of the
local false discovery rate discussed in the paper. They all
depend on the assumption that u-values from noninduced
genes are uniformly distributed. We do not know of any
method that guarantees that this assumption holds strictly.
In the clinical application, we have constructed u-value
distributions using balanced permutations of class labels.
While this is a widely used approach, it is not trouble-free.
Two points need to be raised: First, strong correlations
between genes lead to nonuniformly distributed u-values for
noninduced genes. Clustering patterns can emerge. Without
knowing the underlying correlation structure of genes, we
cannot compensate for this effect. Second, permuted class
labels do not ensure that there is no differential gene
expression at all on the chip. The data might contain a
hidden biological structure, like gender, age, and genetical
background of patients. For example, if the patient sample
comprises both men and women and a random class label

happens to assign most women to the first class and most
men to the second, the score will reflect differential gene
expression between men and women. If we know which
patients are men, we can compensate for this effect. If we are
not provided with this information, it is a hidden structure in
the data that we cannot compensate for. In this case, the
distribution of u-values can be skewed. Nonuniformity of
u-value distributions appears to be an unsolved problem in
estimating local false discovery rates. We assume that it is
also critical for other methods, like the widely used SAM
program of Tusher et al. [24]. We believe that statistical
science could profit from further research in this field.

APPENDIX

EMPIRICAL BAYES ANALYSIS ON u-Values

The empirical Bayes analysis of Efron et al. [7] is designed
for observed test scores t. The original method applies
regression to the term

�ðtÞ ¼ fðtÞ
fðtÞ þBf0ðtÞ

; ð23Þ

where fðtÞ and f0ðtÞ are the common densities as given in
(11). The authors estimate f0 from the data matrix with
permuted class labels. Factor B is the number of
permutations. We adapt the procedure to u-values by
setting B ¼ 1 and allowing bf0f0 to be the optimal estimate,
that is, the uniform density with bf0f0ðuÞ ¼ 1 for all u. As
outlined in Section 3, the authors estimate the proportion
of noninduced genes �0 as

b�0�0 ¼ min
u

f̂fðuÞ
n o

¼ min
u

�̂�ðuÞ
1ÿ �̂�ðuÞ

� �
: ð24Þ

The estimated local false discovery rate is then given as

cfdrfdrðuÞ ¼ b�0�0
1ÿ �̂�ðuÞ
�̂�ðuÞ : ð25Þ

Along these lines, we apply the same smoothing spline
regression as in SEP, compare to Table 1. This is necessary
to make EBA directly comparable to SEP such that
differences between the two are not due to different
smoothing techniques. The original method applies an
unweighted natural spline with 5 degrees of freedom [7].
The changed EBA works as follows: Divide the interval ½0; 1�
into 100 equidistant bins and compute histogram estimators
ðhðlÞÞfl¼1;...;100g for the density f of ðuiÞfi¼1;...;Mg. For all
l ¼ 1; . . . ; 100, we set

�̂�ðlÞ ¼ hðlÞ
hðlÞ þ 1

ð26Þ

and apply the same smoothing spline with 7 degrees of
freedom and decreasing weights to �̂�ðlÞfl¼1;...;100g, as ex-
plained in detail in Table 1. The interpolation of the
smoothed spline output in each ðuiÞfi¼1;...;Mg gives the
estimated ratios ð�̂�ðuiÞÞfi¼1;...;Mg, which can then be inserted
into (24) and (25).
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